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ABSTRACTIS I

Results of HEMP code calculations of simple problems are compared

with exact results to determine the accuracy with which this numerical

technique solves initial-boundary value problems. More complicated prob-

lems of metal liners accelerated by explosives were also calculated with

this code, and these results were compared with experimental results to

determine how well the code simulates these physical processes. It is

concluded that HEMP calculations are accurate enough to be useful as a

tool for predicting the gross motion of metals accelerated by detonating

explosives.
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I. INTRODUCTION

The HEMPl* code is a computer program which is formulated to ap-
proximately solve the conservation equations of mass, momentum, and en-
ergy subject to appropriate irnitial and boundary conditions. The ma-

terials under consideration are described as hydrodynamic materials

(fluids) or elastic-perfectly plastic materials. An energy release

routine which simulates the detonation of a high explosive Is. also in-

cluded. This code contains the essential features necessary to solve

explosive-metal acceleration problems which are relevant to the design

of warheads. Since we plan to use this code to study and predict the

performance of warheads, we first want to gain an understanding of the
accuracy obtainable from it. Two important questions regarding the
accuracy of finite-difference codes are: (1) how well does the numer-

ical scheme solve the governing system of partial differential equa-

tions, and (2) how well do these equations model the physical process?

To obtain some sort of answer to these questions, we first compared

numerical solutions with exact solutions to simple problems, and then,

for more complicated problems, we compared numerical solutions with

experimental results.

In Section II, a sequence of simple problems which possess exact
solutions is solved numerically with the code, and comparisons between

the exact and approximate solutions are made. Problems involving per-

fect fluids, elastic solids, elastic-plastic solids, and detonating

explosives were considered.

In Section III, comparaisons between experimental test results and

HEMP code calculations are made for explosive-metal systems. Conclu-

sions from these comparisons are presented in Section IV. Although the

*References are Zi8ted on page 3S.
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problem formulation and method of solution used in the HEMP code have

been documented by the originators1,2 , a very brief outline of the

formulation is presented, for completeness, in Appendix A.

II. HEMP SOLUTIONS COMPARED WITH EXACT RESULTS

In this section, the results of HEMP calculations applied to a
series of simple problems are presented. For these problems, the exact

solutions are well known and can easily be evaluated. These exact solu-

tions are then compared with the HEMP results in order to determine how
well the governing equations are satisfied by the HEMP solutions.

As a first illustration, the problem of a high pressure, ideal

gas initially trapped in a tube and then released was calculated with

three different mesh sizes. The results are illustrated in Figure 1.
For this and subsequent figures, the notation (P) pressure, (p) density,

(e) specific internal energy, (y) a constant, (G) shear modulus,(a y)
yield strength in tension, and (Vo) initial velocity is used. The sol-
id line on the pressure-position graph indicates the exact solution at

10 psec after release of the gas, and the three numerical results are

indicated by the points. As the number of points in the numerical mesh

is increased the numerical solution approaches the exact solution, and
convergence of the numerical scheme is indicated. All solut;ons repre-
sent the plane rarefaction wave reasonably well. The variation of prop-

erties across the tube, for the HEMP results, was negligible. For com-

putational purposes, this one-dimensional problem can be generalized

slightly by using a mesh which is initially skewed as shown in Figure 2.

The plane rarefaction then passes obliquely across the zones, and, for

computational purposes, the problem is two-dimensional. The numerical

solution is degraded only slightly because of this two-dimensional ef-
fect, as indicated by the comparison between calculations with the rec-
tangular and non-rectangular meshes shown in Figure 2. The most
noticable result of the non-rectangular zoning appears in the position

30
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of the gas boundary. However, for practical purposes, HEMP solutions

appear to be reasonably accurate for expansion waves in an ideal gas.

"Since an interest in the flow of metals also exists, a series of
* one-dimensional (uniaxial strain) impact problems was solved with the

HEMP code. Figure 3 shows a typical Hugoniot curve (solid line) for
an elastic-perfectly plastic material 3 . The dotted line indicates the
straight line extension of the elastic portion of the Hugoniot. Three
different wave structures, depending on the magnitude of the stress
jump, can exist. If a stress jump of a, is present, where al.is below a,,
the yield point stress, an elastic wave with a single stress jump will
be propagated. A double wave structure, elastic precursor followed by
a plastic shock, will propagate if the stress jump is 02, where 02 is
a stress above the yield point value but below the intersection of the
dotted line with the Hugoniot. A stress jump a3 above the intersection
point will again result in a single stress jump (shock).

The numerically calculated pressure distribution resulting from
the elastic impact of two identical blocks is shown in Figure 4 along
with the exact solution. The zoning and initial conditions of the
problem are also shown. Boundary conditions of no vertical velocity on
the upper or lower surfaces were used in the numerical solution. The
HEMP values oscillate somewhat (± 6%) about the exact value of 8 Kb.
A smoother solution to this impact problem may be obtained by increas-
ing the number of zones and by inserting a transition zone to smooth
the initial velocity discontinuity. Results of calculations with
these changes are shown in Figure 5 along with the initial velocity

distribution, The improvement in the quality of the solution, compared

to the solution shown in Figure 4, is app&rent. This problem may also be

treated as a two-dimensional problem by introducing thle non-rectangular

zoning indicated in Figure 6. The degradation of the solution due to two-

dimensional effects can be seen by comparing Figure 6 with Figure 4. The

oscillation in the numerical solution for the non-rectangular zoning case

has increased in amplitude by a factor of two over the one-dimensional case.

However, the solution can be made smoother by using more zones. A
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numerical solution using 40 axial zones in the target material instead

of 20 is shown in Figure 7 where both the pressure and particle velo-

city distribution are indicated. It has been suggested that oscilla-

tions in these solutions could be additionally reduced by introducing

a linear artificial viscosity term'.

If tOe impact velocity is sufficiently increased, the two wave

structure, indicated by the stress level a2 of Figure 3, can be formed

in the impac;ting materials. Figure 8 illustrates a part of the numer-

ical solution for this case. If the impact velocity is further in-

creased, the single wave structure, corresponding to the stress level

3 , ,'nay be fonred. The numerical results for this high velocity im-

pact case are shown in Figure 9.

The conclusion from this series of impact problems is that the

HEMP results do represent, within reasonable accuracy, the steady-state

wave profiles which occur with the elastic-perfectly plastic material.

To simulate the detonation of a high explosive, an "explosive

burn routine" is included in the code. The chemical energy released in

the detonation process is stored in each zone as an initial internal

energy. Release of this energy is started, in each zone, when the cal-

culated position of the detonation reaches the zone center. Tu test

this portion of the code, the problem of a one-dimensional Chapman-

Jouquet (C-J) detonation wave propagating down a closed-end tube was
numerically solved. Figure 10 shows the exact pressure distribution

compared with two numerical solutions (100 zones and 20 zones). Both

solutions fail to produce the peak pressure (C-J pressure). The peak

pressure of the finely zoned solution is about 10% low. For this prob-

lem, the left boundary is fixed. If the left boundary is moved as a

piston to the right with the C-J particle velocity, the peak pressure

of the numerical solution does reproduce the exact C-J value for both

zonings. 4

$ 18
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III. HEMP SOLUTIONS COMPARED WITH EXPERIMENTAL RESULTS

The previous section demonstrated, for a few cases, the accuracy

with which the code solves the partial differential equations and re-

lated jump conditions. In this section, the code calculations are com-

pared with experimental results to determine the overall accuracy with

which the code simulates the physical process of metal acceleration by

explosive loading.

The problem of a cylindrical charge of explosive (Composition B)

accelerating an aluminuai disc was chosen for the first comparison. The

experimental configuration as well 3s the experimental and numerical

results are shown in Figure 11. Here, the motion of the free surface
of the aluminum disc was measured as a function of time with a streak

camera. The calculations were based on the JWL equation of state4 for

the explosive and an equation of state described by Wilkins 1 for the

aluminum disc. The calculated results agree reasonably well with the

experimental values (6 1/2% maximum error).

Figure 12 illustrates the results of a test which was designed

to measure the terminal velocity of preformed steel fragments projected

from the end of a Composition B charge. The experimental velocities

were reported by Taylors. The calculations were based on the JWL equa-

tion of state for Composition B and the equation of state which is in-

corporated in the code for iron. To model the preformed fragments, a
hydrodynamic description (yield strength equal to zero) was used with

the minimum pressure set at zero. The HEMP results duplicate the ex-

perimental values within about 6%. If one would use a Gurney type

analysis to predict velocites for this cunfiguration, 6 the predicted

velocity would be about 2.8 mi/usec, or a minimum error of about 32%.

A third comparison between calculated and experimental results is

illustrated in Figures 13 and 14. A steel cylinder filled with Com-

23
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position B is detonated at one end and the resulting fragment velocities
are both measured and calculated. In the calculations, the steel is
considered as an elastic-perfectly plastic solid up to the point of ex-
pansion where the pressure becomes less than a predetermined minimum
value. From that point on, the steel is treated as a hydrodynamic ma-
terial in an attempt to model the fragmented liner. The calculations
were stopped when it was observed that the velocities of the steel lin-
er had stabilized (about 45 psec after initiation). The experimental

fragment velocities were measured fronm fragment positions obtained at
300 usec and at 600 Psec. These velocities are compared in Figure 13
as a function of the initial position along the cylinder. Figure 14

compares the calculated and observed fragment projection angles. Fig-
ures 13 and 14 indicate good agreement between calculated and ex-

perimental results.

Figures 15, 16 and 17 show the final comparison between cal- I
culated and experimental results. The top portions of these photographs

* show flash radiographs of the event while the lower portions show the j.
Scalculated configurations. The explosive-metal system consists of a

spherical cap of mild steel in contact with a cylindrical explosive (Corn-
position B) and a booster. The metal is accelerated from the left face

of the explosive which is initiated on the right end of the booster.
Figures 15, 16 and 17 show various stages of the acceleration pro,-

crss to the point where the numerical solution could not be continued
without rezoning. In these figures, the relative horizontal location of
both the radiographs and the calculated grid is correct. The last
comparison (31.8usec) shows the configuration after the liner has moved
about one and a half calibers. The difference between the calculated
velocity at this time and velocities estimated from the radiographs is
6 7/2%. For this series of calculations, the JWL equation of state was
used to describe the explosive products.4 The liner material was model-
ed as an elastic-perfectly plastic material with an equation of a state
of the Mie-GrUneisen form. To simulate the edge spall which occurs in
the liner, a failure criterion based upon pvessure was used. If the

pressure in a zone goes below a minimum value (-IOKb), the material in/

28
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Figure 15. Calculated and experimental configuration of a steelspherical cap accelerated by an incontact explosive
at the instant of initiation (right) and 7 psec after
initiation (left)
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Figure 16. Calculated and experimental configuration of a steel
spherical cap accelerated by an incontact explosive
at 12.5 psec (right) and 17.5 p~sec (left) after in-
itiation

30
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Figure 17. Calculated and experimental configuration of a steel
spherical cap accelerated by an lncontact explosive
at 22.5 visec (right) and 31.8 usec (left) after in-
itiation

31



that zone Is considered failed, and the yield strength and shear modulus
are set to zero in that zone for the remainder of the calculation.
Also, the subsequent pressure in that zone is not allowed to become neg-
ative. At 12.5 usec, spalling of the edges of the liner is apparent in
the radiograph. It is also indicated in the calculation by the severely
distorted zones. In the calculations, all materials are forced to re-
main continuous; therefore, spalled regions are indicated by grossly
distorted zones, see Figure 17. In order to continue these calcula-

*tions to 31 psec, it was necessary to disregard the time step calculation
for the spalled zones. The calculated motion of the remainder of the

grid should be valid.

IV. SUMMARY AND CONCLUSIONS

In an attempt to gain an understanding of the accuracy obtained

from the HEMP code, five problems were solved numerically with it, and
these solutions were compared with the exact solutions to the same prob-

lems. These problems were selected because they exercised the subrou-
tines which are necessary to solve problems of metal liners accelerated
by high explosives. Based upon this comparison the numerical technique

appears to generate solutions which agree reasonably with the exact
solutions. Problems which are inherently two-dimensional require a
finer zoning than one-dimensional problems, if the same quality of

solution is desired. Generally, if a coarse zoning is used, structure
which appears in the exact solution tends to be smoothed and numerical

values may tend to oscillate about the correct values. Also, solutions
to problems which are essentially hydrodynamic flows appear to be better
than solutions to elastic or elastic-plastic motions.

Four problems which involve the acceleration of metallic liners
by high explosives were solved numerically with the HEMP code and

these results were compared with experimental observations. In all

cases, including the case of preformed fragments, the results were in$/32
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reasonable agreement. In calculating the motion of thin liners, it is
practical to use only a few mesh zones across the liner thickness.
Therefore, no attempt is made to resolve wave motion or stresses in the
metal liner; however, based upon the above results, the gross motion of
the liner is calculated reasonably well.

From the above comparisons, we conclude that BRL's current ver-
sion of the HEMP code is operating correctly and that the accuracy is

sufficient to make it useful. This code should be applied to current
design problems which involve metal liners accelerated by detonating
explosives in order to determine if the number of iterations required

by current trial and error design techniques can be significantly re-

duced.
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APPENDIX A

PROBLEM FORMULATION OF THE HEMP CODE

NOTATION:
(All tensors are referred to a fixed Cartesian coordinate system.)

e specil'ic internal energy

" components of the rate of strain tensor

eij components of the deviator of

G shear modulus

P pressure

-Si components of the deviator of 0,j

t time

•v components of velocity

i:-1 wai components of the Eulerian stress tensor

ay yield strength in simple tension

D material derivative

DS.. deviator stress rate (Jaumann derivative)

X factor of proportionality

p density

OP implies plastic part

()e implies elastic part

8ij Kronecker delta
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A description of the problem formulation and numerical technique

used in the HEMP code can be found in references 1 and 2. A brief de-

scription is included here for easy reference.
TThe conservation equations of mass, momentum, and energy may be

. written with reference to a fixed Cartesian coordinate system as

+ =0 , (A.l)

Dv. (A.2)

"De (A.3)•iP Ut = j s j

where the standard convention of summation on repeated subscripts is
implied and a comma indicates partial differentiation with respect to

that space coordinate. The stain rate is defined as

• V + V (A-4)

2- ij

For the plasticity theory used in the code, the strain rate is assumed

to be composed of an elastic and a plastic part according to

*eij =e + 1p'' (A.5)

The straiR rate deviator, e is defined by

.ij ij 6ij../ (A.6)

with similar-deflnitions for the elastic, 4.!, and plastic, •P, de-
vitr.TesresdvaoS2-4 1-viators, The stress deviator, Sij, and pressure, P, are given by
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S.. = aij + Sij P, P - 0kk" (A.7)

The von Mises yield function, f, where

. ij l . 1 s (A.8)

is used to determine if the material is in an elastic or a plastic state.
f ff < 0 or f =0 and Tt- < 0, then the material is in the elastic state and

"the above equations are supplemented by an equation of state

P = P(p,e) , (A.9)

and

HI, o0.(

dfIf f = 0 and F > 0, then the material is in the plastic state and the
preceding relations [(A.1) to (A.8)] are supplemented by

P P(p,e) Dt 2G

4ie. )LXS.. , k - 0. 0.(A.)

The above system of equations is integrated in time by using an
explicit, finite-difference technique. The derivatives appearing in
the differential equations are replaced by finite-difference approxi-

mations as follows:

a. material derivative

Dt fo(t+At) - fo(t)
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where.the subscript o indicates a point fixed in the moving material.

b. partial space derivatives

* ~Io T fiiyl"y4) + fb(y2-yl) + f (Y3-Y2) + fd(y4-Y3] 3
where the subscript notation is referred to :Figure A-1, Quantities

Y

1.

21

3

X
Figure A-I. Finite-Difference Mesh Fixed in Material

like position and velocity are defined at mesh points, but quantities

like pressure, volume, etc., are defined at zone centers. In the above
equation, f is a zone center quantlty and A is the area of the dotted

polygon. In-this formulation, the finite-difference mesh is fixed in
and moves with the material. The approximation used above is derived

from

A similar expression holds for partial derivatives with respect to Y.

c. stress rate

DS.
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where the prime indicates that Sj'is referred to a Cartesian coordi-

nate system which translates and rotates with the material. At time t,

the primed coordinate system is aligned with the fixed coordinate system.

The above finite-difference equations are used to reduce the
partial differential equations to algebraic equations. Then, from
known conditions at one time t, the variables can be estimated at
time t + At. First, the momentum equations are used to estimate the
velocities over the time increment At from the conditions given at

time t. The coordinate positions at t + At for the mesh points are
determined from these velocities. Volumes at the end of the time
increment are determined from the new coordinate positions. The vis-

cous pressure (based upon the von Neumann-Richtmyer method) which is

added to the pressure from the equation of state is calculated from

q i•V) f ý < 0 or

q = 0 if t a 0,

ghere 9 is the volumetric rate of change, A is the zone area, and C is

a conlstant. The strain rate is calculated from Equation (A.4) with
the known velocities, and the stress rate is calculated from these
strains by Equation (A.l0). ThEse stresses are then used to check the

yield condition, Equation (A.8). If the stresses are within the
elastic range, then these values are correct; however, if the material
is plastic, these stresses are reduced by multiplying each component by

/273 0y(SSijS )•i .

Thus, the stress state is reduced to fall on the yield surface, and

the flow rule of Equation (A.ll) is preserved. The density of
each zone is calculated from the continuity equation (A.l), and e and
P are obtained from the energy equation (A.3) and the equation of state
(A.9). A time increment is next calculated based upon the length of

time required for a dilatational wave to transverse a zone. All
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quantities are now determined at time t + at. This procedure is con-

tinually used to produce a solution over the time interval of interest.
The code can treat boundary conditions of either a stress free

boundary or a specified velocity on the boundary. Also, to treat

problems which involve two materials which slide relative to each-

other, a decoupling of grid points on the interface is accomplished in

a slide line routine.
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